Sains Malaysiana 54(11)(2025): 2721-2731

http://doi.org/10.17576/jsm-2025-5411-12

 

Distinct Degradation Behaviors of Gaseous H2O2 and Benzene in NaOH-MnSO4, MnO2, and KI Systems

(Kelakuan Degradasi Berbeza bagi Gas H2O2 dan Benzena dalam Sistem NaOH-MnSO4, MnO2 dan KI)

 

YUPING JIANG*, ANDONG ZHU & SHIMIN WU

 

University of Electronic Science and Technology of China, Zhongshan Institute, China

 

Received: 23 May 2025/Accepted: 7 November 2025

 

Abstract

Gas-phase H2O2 ([H2O2]g) degradation is crucial yet insufficiently characterized, particularly under pollutant coexistence conditions. This study innovatively investigates the degradation behaviors of [H2O2]g and [benzene]g using NaOH-MnSO4 solution, MnO2 catalyst particles, and KI solution systems. Experimental results demonstrate: fluorinated ethylene propylene (FEP) materials effectively mitigate system transfer losses. Under both isolated and coexisting conditions, NaOH-MnSO4 and KI solutions maintained high [H2O2]g degradation efficiency (>90%). However, KI's [benzene]g removal rate plummeted from 14% to 4%, while competitive [benzene]g adsorption reduced MnO2's [H2O2]g removal efficiency from 90% to 52%, with [benzene]g removal remaining constant. A unique anti-synergistic effect was identified in the NaOH-MnSO4/MnO2 system, hypothesized to result from rapid hydroxyl radical annihilation under high alkalinity and H2O2 concentration. Cross-validated pH monitoring and UV-Vis spectroscopy suggest H2O2-induced iodide depletion in the KI system substantially weakens hydrogen bond-mediated benzene solubilization. Spectral analysis further showed excessive H2O2 masks benzene's characteristic peaks, while emerging absorption bands confirm intermediate product formation during oxidation.

Keywords: Benzene; hydrogen peroxide; hydroxyl radical; removal efficiency; synergistic effect

 

Abstrak

Degradasi H2O2 ([H2O2]g) fasa gas adalah penting tetapi tidak dicirikan dengan secukupnya, terutamanya di bawah keadaan kewujudan bersama bahan pencemar. Penyelidikan ini secara inovatif mengkaji tingkah laku degradasi [H2O2]g dan [benzena]g menggunakan larutan NaOH-MnSO4, zarah pemangkin MnO2 dan sistem larutan KI. Keputusan uji kaji menunjukkan bahan etilena propilena (FEP) berfluorinasi berkesan mengurangkan kehilangan pemindahan sistem. Di bawah kedua-dua keadaan terpencil dan wujud bersama, larutan NaOH-MnSO4 dan KI mengekalkan kecekapan degradasi [H2O2]g yang tinggi (>90%). Walau bagaimanapun, kadar penyingkiran [benzena]g KI menurun mendadak daripada 14% kepada 4%, manakala penjerapan [benzena]g yang kompetitif mengurangkan kecekapan penyingkiran [H2O2]g MnO2 daripada 90% kepada 52% dengan penyingkiran [benzena]g kekal malar. Kesan anti-sinergi yang unik telah dikenal pasti dalam sistem NaOH-MnSO4/MnO2 yang dihipotesiskan sebagai hasil daripada pemusnahan radikal hidroksil yang cepat di bawah kealkalian yang tinggi dan kepekatanH2O2. Pemantauan pH yang disahkan silang dan spektroskopi UV-Vis menunjukkan bahawa penipisan iodida yang disebabkan oleh H2O2 dalam sistem KI secara ketara melemahkan pelarutan benzena yang dimediasi ikatan hidrogen. Analisis spektrum selanjutnya mendedahkanH2O2 yang berlebihan menutupi puncak ciri benzena, manakala jalur penyerapan yang muncul mengesahkan pembentukan produk perantaraan semasa pengoksidaan.

Kata kunci: Benzena; hidrogen peroksida; kecekapan penyingkiran; kesan sinergi; radikal hidroksil

 

REFERENCES

Chen, R., Wang, S., Cui, L., Liu, X., Zhang, W. & Pi, X. 2016. Synergy of FeMnOx and plasma for the removal of benzene. Vacuum & Cryogenics 22(3): 173-176. https://doi.org/10.3969/j.issn.1006-7086.2016.03.011

Chen, Y., Chi, Y., Wu, X., Lin, C., Lin, T., Gao, M., Zhao, C. & Sa, B. 2023. O-Vacancy-Rich ε-MnO₂ synthesized at hydrophobic interface: An efficient Fenton-like catalyst for removing ciprofloxacin from water. Crystals 13(12): 1664. https://doi.org/10.3390/cryst13121664

Chen, Z., Chen, S., Gong, Y., Shen, H. & Xu, X. 2020. Partitioning of hydrogen peroxide in gas-liquid and gas-aerosol phases. Atmospheric Chemistry and Physics 20(5): 5513-5526. https://doi.org/10.5194/acp-20-5513-2020

Chirat, C., Viardin, M.T. & Lachenal, D. 1994. Use of a reducing stage to avoid degradation of softwood kraft pulp after ozone bleaching. Paperi ja Puu 76(6/7): 409-418.

Cornu, D., Coustel, R., Durand, P., Carteret, C. & Ruby, C. 2022. How can pH drop while adding NaOH? Formation and transformation of Mn₄(OH)₆SO₄. Journal of Solid State Chemistry 305: 122631. https://doi.org/10.1016/j.jssc.2021.122631

Elbasuney, S., Attwa, M., Deif, A., ElGamal, M., Fayoud, A., Abdelkhalek, S.M. & Gobara, M. 2024. Green synthesis and catalytic activity assessment of bespoke nano-catalyst for eco-friendly green propellant systems based on hydrogen peroxide. Brazilian Journal of Chemical Engineering 41: 1151-1164. https://doi.org/10.1007/s43153-023-00380-5

Fuku, K., Kanai, H., Todoroki, M., Mishima, N., Akagi, T., Kamegawa, T. & Ikenaga, N. 2021. Heterogeneous Fenton degradation of organic pollutants in water enhanced by combining iron-type layered double hydroxide and sulfate. Chemistry - An Asian Journal 16(14): 1887-1892. https://doi.org/10.1002/asia.202100375

Ishita, I., Sahoo, P., Sow, P.K. & Singhal, R. 2023. Unlocking the potential of KI as redox additive in supercapacitor through synergistic enhancement with H₂SO₄ as a co-electrolyte. Electrochimica Acta 451: 142286. https://doi.org/10.1016/j.electacta.2023.142286

Jiang, Y., Song, J. & Zhu, A. 2021. Gas-phase advanced oxidation (GPAO) for benzene-containing gas by an ultraviolet irradiation/hydrogen peroxide vapour (UV/[H₂O₂]g) process. Environmental Science and Pollution Research 29(11): 16418-16426. https://doi.org/10.21203/rs.3.rs-218136/v1

Kaur, P., Singh, D. & Aggarwal, S.G. 2024. Benzene: A critical review on measurement methodology, certified reference material, exposure limits with its impact on human health and mitigation strategies. Environmental Analysis Health and Toxicology 39: e2024012. https://doi.org/10.5620/eaht.2024012

Kim, K.M., Kim, I.G., Nam, Y.S., Choi, J., Chung, W., Oh, I., Lee, K.B., Jung, M., Park, S. & Nam, I.W. 2018. Catalytic decomposition of hydrogen peroxide aerosols using granular activated carbon coated with manganese oxides. Journal of Industrial and Engineering Chemistry 62: 225-233. https://doi.org/10.1016/j.jiec.2017.12.062

Kumar, A., Holuszko, M.E. & Janke, T. 2020. Removal of flame retardants from the non-metal fraction of the processed waste printed circuit boards using organic solvents and pyrolysis. Environmental Engineering and Management Journal 19(6): 907-916. https://doi.org/10.30638/eemj.2020.086

Li, J., Li, H., Wang, X., Wang, W., Ge, M., Zhang, H., Zhang, X., Li, K., Chen, Y. & Wu, Z. 2021a. A large-scale outdoor atmospheric simulation smog chamber for studying atmospheric photochemical processes: Characterization and preliminary application. Journal of Environmental Sciences 102: 189-198. https://doi.org/10.1016/j.jes.2020.09.015

Li, P., Yang, C., Zhang, C., He, G., Xu, C., Liu, J., Li, C., Zhang, Y., Sun, Y., Li, X., Wang, X., Chen, J., He, H., Herrmann, H. & Mu, Y. 2021b. Photochemical aging of atmospheric fine particles as a potential source for gas-phase hydrogen peroxide. Environmental Science & Technology 55(22): 15063-15068. https://doi.org/10.1021/acs.est.1c04453

Li, T., Simon, L.C. & Jonathan, P.D.A. 2020. Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles. PNAS 117: 1356-1362. https://doi.org/10.1073/pnas.1916401117

Ling, L., Cui, L., Huang, F., Chen, M., Zeng, G., Huang, D., Lai, B., Liu, S., Zhang, M., Qin, L., Li, M., He, J., Zhao, Y. & Chen, L. 2019. Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: Synergism of bio-char and Fe-Mn binary oxides. Water Research 160: 238-248. https://doi.org/10.1016/j.watres.2019.05.081

Liu, L., Liu, G., Ruan, F., Xin, X., Zhang, L. & Duan, H. 2025. Enhanced anaerobic sludge digestion by calcium peroxide pretreatment combined with manganese dioxide: Performances and mechanisms. ACS ES&T Water 5(1): 1-12. https://doi.org/10.1021/acsestwater.4c01225

Luan, S.L., Tavares, M.D., Zanin, J.A., Hidalgo, M.T. & Dias, L.A. 2021. Implications of COD analysis use in the peracetic acid-based wastewater treatment. Water Science & Technology 84(5): 1270-1278. https://doi.org/10.2166/wst.2021.300

Ma, J., Yu, X., Jiang, X., Wang, J., Li, J., Zhang, Y., Chen, L. & Wang, Y. 2020. Percarbonate persistence under different water chemistry conditions. Chemical Engineering Journal 389: 124342. https://doi.org/10.1016/j.cej.2019.123422

Miller, C.M. & Valentine, R.L. 1995. Oxidation behavior of aqueous contaminants in the presence of hydrogen peroxide and filter media. Journal of Hazardous Materials 41(1): 105-116. https://doi.org/10.1016/0304-3894(94)00098-2

Möller, D. 2009. Atmospheric hydrogen peroxide: Evidence for aqueous-phase formation from a historic perspective and a one-year measurement campaign. Atmospheric Environment 43(38): 5930-5937. https://doi.org/10.1016/j.atmosenv.2009.08.013

Nippatlapalli, N. & Ganta, A. 2024. Recent progress on application of nonthermal plasma for the degradation of aqueous emerging contaminants: A review on mechanism, reactor strategies, integrated systems and future perspective. Process Safety and Environmental Protection 187: 1454-1470. 

Opeida, I.A. & Sheparovych, R.B. 2019. Inhibition by hydrogen peroxide in the radical chain oxidation of hydrocarbons by molecular oxygen. Theoretical and Experimental Chemistry 55(1): 36-42. https://doi.org/10.1007/s11237-019-09593-7

Qi, X., Sun, X., Yang, H., An, H., Li, F., Xu, W. & Wang, Y. 2021. Solubilities of benzene, toluene, and ethylbenzene in deep eutectic solvents. Journal of Chemical & Engineering Data 66(6): 2460-2469. https://doi.org/10.1021/acs.jced.1c00091

Quentin, H., Bellenoue, B., Boust, M., Bouchez, R. & Batonneau, Y. 2022. Experimental comparison of hydrogen peroxide catalysts for a hydrogen peroxide/n-decane bipropellant combustor. Journal of Propulsion and Power 38(2): b38593. https://doi.org/10.2514/1.b38593

Shuhuan, M. & Xinsheng, C. 2010. Kinetics of Mn2+-induced hydrogen peroxide decomposition in alkaline medium. In Research Progress in Paper Industry and Biorefinery (4th ISETPP), Vols 1-3. https://doi.org/10.0410/cata/6819d30dcd134093f02b457d1309ccd7

Singh, H., Singh, D. & Mishra, A.K. 2019. Multi-objective particle swarm optimization-based adaptive neuro-fuzzy inference system for benzene monitoring. Neural Computing & Applications 31(5): 2195-2201. https://doi.org/10.1007/s00521-017-3181-7

Tian, H., Zhang, T., Yang, H., Sun, X., Liang, D. & Lin, L. 2000. Manganese-lead mixed oxide catalysts for decomposition of hydrogen peroxide. Chinese Journal of Catalysis 21(6): 600-602.

Tong, Y., McNamara, P.J. & Mayer, B.K. 2019. Adsorption of organic micropollutants onto biochar: A review of relevant kinetics, mechanisms and equilibrium. Environmental Science: Water Research & Technology 5(5): 821-832. https://doi.org/10.1039/C8EW00938D

Villanueva, A.D. 2018. Salting out and salting in of benzene in water: A consistency evaluation. Monatshefte für Chemie 149: 231-242. https://doi.org/10.1007/s00706-017-2122-6

Wang, T. 2012. New method for removal of hydrogen peroxide interference in the analysis of chemical oxygen demand. Environmental Science & Technology 46(4): 2294-2302. 

Wang, Y., Hou, Y., Wu, W., Liu, D., Ji, Y. & Ren, S. 2016. Roles of a hydrogen bond donor and a hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents. Green Chemistry 18(8): 3089-3098. https://doi.org/10.1039/c5gc02909k

Xu, X., Zhang, X., Liu, S., Zhang, J. & Xu, Y. 2018. Sustained production of H₂O₂ in alkaline water solution using borate and phosphate-modified Au/TiO₂ photocatalysts. Photochemical & Photobiological Sciences 17: 102-108. https://doi.org/10.1039/c8pp00177d

Xuan, X., Chen, Z., Gong, Y., Shen, H. & Chen, S. 2020. Partitioning of hydrogen peroxide in gas-liquid and gas-aerosol phases. Atmospheric Chemistry and Physics 20(9): 5513-5526. https://doi.org/10.5194/acp-20-5513-2020

Zhang, G., Ren, L., Yan, Z., Kang, L., Lei, Z., Xu, H., Shi, F. & Liu, Z.H. 2015. Mesoporous-assembled MnO₂ with large specific surface area. Journal of Materials Chemistry A 3: 13263-13271. https://doi.org/10.1039/C5TA01399D

Zhang, H., Wang, H., Huang, H., Li, Y., Liu, J. & Zhang, X. 2018. Cooperative decomposition of hydrogen peroxide by lignin-combined transition metals in pulp bleaching. BioResources 13(2): 3922-3932. https://doi.org/10.15376/biores.13.2.3922-3931

Zhang, X., Liu, Y. & Lu, R. 2010. Decomposition kinetics and mechanism of alkaline hydrogen peroxide with transition metals. Journal of South China University of Technology (Natural Science Edition) 38(9): 40-45. https://doi.org/10.3969/j.issn.1000-565X.2010.09.008

Zhang, X., Zhou, B., Yin, S., Wang, Y., Zhang, X., Meng, Q., Meng, F., Wei, C. & Wen, G. 2022. Mesoporous manganese dioxide prepared by nano-casting: An efficient catalyst for degradation of methyl orange and oxalic acid in aqueous solution. Vacuum 206: 111495. https://doi.org/10.1016/j.vacuum.2022.111495

 

*Corresponding author; email: jyp@zsc.edu.cn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous

next