Sains Malaysiana 54(11)(2025): 2721-2731
http://doi.org/10.17576/jsm-2025-5411-12
Distinct Degradation Behaviors of Gaseous H2O2 and Benzene in NaOH-MnSO4, MnO2, and KI Systems
(Kelakuan Degradasi Berbeza bagi Gas H2O2 dan Benzena dalam Sistem NaOH-MnSO4, MnO2 dan KI)
YUPING
JIANG*, ANDONG ZHU & SHIMIN WU
University
of Electronic Science and Technology of China, Zhongshan Institute, China
Received:
23 May 2025/Accepted: 7 November 2025
Abstract
Gas-phase H2O2 ([H2O2]g)
degradation is crucial yet insufficiently characterized, particularly under
pollutant coexistence conditions. This study innovatively investigates the
degradation behaviors of [H2O2]g and [benzene]g using NaOH-MnSO4 solution, MnO2 catalyst particles, and KI solution systems. Experimental results demonstrate:
fluorinated ethylene propylene (FEP) materials effectively mitigate system
transfer losses. Under both isolated and coexisting conditions, NaOH-MnSO4 and KI solutions maintained high [H2O2]g degradation efficiency (>90%). However, KI's [benzene]g removal
rate plummeted from 14% to 4%, while competitive [benzene]g adsorption reduced MnO2's [H2O2]g removal efficiency from 90% to 52%, with [benzene]g removal
remaining constant. A unique anti-synergistic effect was identified in the NaOH-MnSO4/MnO2 system, hypothesized to result from rapid hydroxyl radical annihilation under
high alkalinity and H2O2 concentration. Cross-validated
pH monitoring and UV-Vis spectroscopy suggest H2O2-induced
iodide depletion in the KI system substantially weakens hydrogen bond-mediated
benzene solubilization. Spectral analysis further showed excessive H2O2 masks benzene's characteristic peaks, while emerging absorption bands confirm
intermediate product formation during oxidation.
Keywords: Benzene; hydrogen peroxide; hydroxyl radical; removal efficiency; synergistic effect
Abstrak
Degradasi H2O2 ([H2O2]g) fasa gas adalah penting tetapi tidak dicirikan dengan secukupnya, terutamanya di bawah keadaan kewujudan bersama bahan pencemar. Penyelidikan ini secara inovatif mengkaji tingkah laku degradasi [H2O2]g dan [benzena]g menggunakan larutan NaOH-MnSO4, zarah pemangkin MnO2 dan sistem larutan KI. Keputusan uji kaji menunjukkan bahan etilena propilena (FEP) berfluorinasi berkesan mengurangkan kehilangan pemindahan sistem. Di bawah kedua-dua keadaan terpencil dan wujud bersama, larutan NaOH-MnSO4 dan KI mengekalkan kecekapan degradasi [H2O2]g yang tinggi (>90%). Walau bagaimanapun, kadar penyingkiran [benzena]g KI menurun mendadak daripada 14% kepada 4%, manakala penjerapan [benzena]g yang kompetitif mengurangkan kecekapan penyingkiran [H2O2]g MnO2 daripada 90% kepada 52% dengan penyingkiran [benzena]g kekal malar. Kesan anti-sinergi yang unik telah dikenal pasti dalam sistem NaOH-MnSO4/MnO2 yang dihipotesiskan sebagai hasil daripada pemusnahan radikal hidroksil yang cepat di bawah kealkalian yang tinggi dan kepekatanH2O2. Pemantauan pH
yang disahkan silang dan spektroskopi UV-Vis menunjukkan bahawa penipisan iodida yang disebabkan oleh H2O2 dalam sistem KI secara ketara melemahkan pelarutan benzena yang dimediasi ikatan hidrogen. Analisis spektrum selanjutnya mendedahkanH2O2 yang berlebihan menutupi puncak ciri benzena, manakala jalur penyerapan yang muncul mengesahkan pembentukan produk perantaraan semasa pengoksidaan.
Kata kunci: Benzena; hidrogen peroksida; kecekapan penyingkiran; kesan sinergi; radikal hidroksil
REFERENCES
Chen, R., Wang, S., Cui, L., Liu, X., Zhang, W. & Pi, X. 2016.
Synergy of FeMnOx and plasma for the removal of
benzene. Vacuum & Cryogenics 22(3): 173-176. https://doi.org/10.3969/j.issn.1006-7086.2016.03.011
Chen, Y., Chi, Y., Wu, X., Lin, C., Lin, T., Gao, M., Zhao, C.
& Sa, B. 2023. O-Vacancy-Rich ε-MnO₂
synthesized at hydrophobic interface: An efficient Fenton-like catalyst for
removing ciprofloxacin from water. Crystals 13(12): 1664. https://doi.org/10.3390/cryst13121664
Chen, Z., Chen, S., Gong, Y., Shen, H. & Xu, X. 2020.
Partitioning of hydrogen peroxide in gas-liquid and gas-aerosol phases. Atmospheric
Chemistry and Physics 20(5): 5513-5526. https://doi.org/10.5194/acp-20-5513-2020
Chirat, C., Viardin,
M.T. & Lachenal, D. 1994. Use of a reducing stage
to avoid degradation of softwood kraft pulp after ozone bleaching. Paperi ja Puu 76(6/7): 409-418.
Cornu, D., Coustel, R., Durand, P.,
Carteret, C. & Ruby, C. 2022. How can pH drop while adding NaOH? Formation
and transformation of Mn₄(OH)₆SO₄. Journal of Solid State Chemistry 305: 122631. https://doi.org/10.1016/j.jssc.2021.122631
Elbasuney, S., Attwa,
M., Deif, A., ElGamal, M., Fayoud,
A., Abdelkhalek, S.M. & Gobara, M. 2024. Green
synthesis and catalytic activity assessment of bespoke nano-catalyst for
eco-friendly green propellant systems based on hydrogen peroxide. Brazilian
Journal of Chemical Engineering 41: 1151-1164. https://doi.org/10.1007/s43153-023-00380-5
Fuku, K., Kanai, H., Todoroki, M.,
Mishima, N., Akagi, T., Kamegawa, T. & Ikenaga,
N. 2021. Heterogeneous Fenton degradation of organic pollutants in water enhanced
by combining iron-type layered double hydroxide and sulfate. Chemistry - An
Asian Journal 16(14): 1887-1892. https://doi.org/10.1002/asia.202100375
Ishita, I., Sahoo, P., Sow, P.K. & Singhal, R. 2023. Unlocking
the potential of KI as redox additive in supercapacitor through synergistic
enhancement with H₂SO₄ as a co-electrolyte. Electrochimica Acta 451: 142286. https://doi.org/10.1016/j.electacta.2023.142286
Jiang, Y., Song, J. & Zhu, A. 2021. Gas-phase advanced
oxidation (GPAO) for benzene-containing gas by an ultraviolet
irradiation/hydrogen peroxide vapour (UV/[H₂O₂]g) process. Environmental Science and Pollution
Research 29(11): 16418-16426. https://doi.org/10.21203/rs.3.rs-218136/v1
Kaur, P., Singh, D. & Aggarwal, S.G. 2024. Benzene: A critical
review on measurement methodology, certified reference material, exposure
limits with its impact on human health and mitigation strategies. Environmental
Analysis Health and Toxicology 39: e2024012. https://doi.org/10.5620/eaht.2024012
Kim, K.M., Kim, I.G., Nam, Y.S., Choi, J., Chung, W., Oh, I., Lee,
K.B., Jung, M., Park, S. & Nam, I.W. 2018. Catalytic decomposition of
hydrogen peroxide aerosols using granular activated carbon coated with
manganese oxides. Journal of Industrial and Engineering Chemistry 62:
225-233. https://doi.org/10.1016/j.jiec.2017.12.062
Kumar, A., Holuszko, M.E. & Janke, T.
2020. Removal of flame retardants from the non-metal fraction of the processed
waste printed circuit boards using organic solvents and pyrolysis. Environmental
Engineering and Management Journal 19(6): 907-916. https://doi.org/10.30638/eemj.2020.086
Li, J., Li, H., Wang, X., Wang, W., Ge, M., Zhang, H., Zhang, X.,
Li, K., Chen, Y. & Wu, Z. 2021a. A large-scale outdoor atmospheric
simulation smog chamber for studying atmospheric photochemical processes:
Characterization and preliminary application. Journal of Environmental
Sciences 102: 189-198. https://doi.org/10.1016/j.jes.2020.09.015
Li, P., Yang, C., Zhang, C., He, G., Xu, C., Liu, J., Li, C.,
Zhang, Y., Sun, Y., Li, X., Wang, X., Chen, J., He, H., Herrmann, H. & Mu,
Y. 2021b. Photochemical aging of atmospheric fine particles as a potential
source for gas-phase hydrogen peroxide. Environmental Science &
Technology 55(22): 15063-15068. https://doi.org/10.1021/acs.est.1c04453
Li, T., Simon, L.C. & Jonathan, P.D.A. 2020. Fast oxidation of
sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles. PNAS 117: 1356-1362. https://doi.org/10.1073/pnas.1916401117
Ling, L., Cui, L., Huang, F., Chen, M., Zeng, G., Huang, D., Lai,
B., Liu, S., Zhang, M., Qin, L., Li, M., He, J., Zhao, Y. & Chen, L. 2019.
Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide:
Synergism of bio-char and Fe-Mn binary oxides. Water Research 160:
238-248. https://doi.org/10.1016/j.watres.2019.05.081
Liu, L., Liu, G., Ruan, F., Xin, X., Zhang, L. & Duan, H. 2025.
Enhanced anaerobic sludge digestion by calcium peroxide pretreatment combined
with manganese dioxide: Performances and mechanisms. ACS ES&T Water 5(1): 1-12. https://doi.org/10.1021/acsestwater.4c01225
Luan, S.L., Tavares, M.D., Zanin, J.A., Hidalgo, M.T. & Dias,
L.A. 2021. Implications of COD analysis use in the peracetic acid-based
wastewater treatment. Water Science & Technology 84(5):
1270-1278. https://doi.org/10.2166/wst.2021.300
Ma, J., Yu, X., Jiang, X., Wang, J., Li, J., Zhang, Y., Chen, L.
& Wang, Y. 2020. Percarbonate persistence under different water chemistry
conditions. Chemical Engineering Journal 389: 124342. https://doi.org/10.1016/j.cej.2019.123422
Miller, C.M. & Valentine, R.L. 1995. Oxidation behavior of
aqueous contaminants in the presence of hydrogen peroxide and filter media. Journal
of Hazardous Materials 41(1): 105-116. https://doi.org/10.1016/0304-3894(94)00098-2
Möller, D. 2009. Atmospheric hydrogen peroxide: Evidence for
aqueous-phase formation from a historic perspective and a one-year measurement
campaign. Atmospheric Environment 43(38): 5930-5937. https://doi.org/10.1016/j.atmosenv.2009.08.013
Nippatlapalli, N. & Ganta, A. 2024. Recent
progress on application of nonthermal plasma for the degradation of aqueous
emerging contaminants: A review on mechanism, reactor strategies, integrated
systems and future perspective. Process Safety and Environmental Protection 187: 1454-1470.
Opeida, I.A. & Sheparovych,
R.B. 2019. Inhibition by hydrogen peroxide in the radical chain oxidation of
hydrocarbons by molecular oxygen. Theoretical and Experimental Chemistry 55(1): 36-42. https://doi.org/10.1007/s11237-019-09593-7
Qi, X., Sun, X., Yang, H., An, H., Li, F., Xu, W. & Wang, Y.
2021. Solubilities of benzene, toluene, and ethylbenzene in deep eutectic
solvents. Journal of Chemical & Engineering Data 66(6):
2460-2469. https://doi.org/10.1021/acs.jced.1c00091
Quentin, H., Bellenoue, B., Boust, M., Bouchez, R. & Batonneau,
Y. 2022. Experimental comparison of hydrogen peroxide catalysts for a hydrogen
peroxide/n-decane bipropellant combustor. Journal
of Propulsion and Power 38(2): b38593. https://doi.org/10.2514/1.b38593
Shuhuan, M. & Xinsheng,
C. 2010. Kinetics of Mn2+-induced hydrogen peroxide decomposition in
alkaline medium. In Research Progress in Paper Industry and Biorefinery (4th ISETPP), Vols 1-3. https://doi.org/10.0410/cata/6819d30dcd134093f02b457d1309ccd7
Singh, H., Singh, D. & Mishra, A.K. 2019. Multi-objective
particle swarm optimization-based adaptive neuro-fuzzy inference system for
benzene monitoring. Neural Computing & Applications 31(5):
2195-2201. https://doi.org/10.1007/s00521-017-3181-7
Tian, H., Zhang, T., Yang, H., Sun, X., Liang, D. & Lin, L. 2000.
Manganese-lead mixed oxide catalysts for decomposition of hydrogen peroxide. Chinese
Journal of Catalysis 21(6): 600-602.
Tong, Y., McNamara, P.J. & Mayer, B.K. 2019. Adsorption of
organic micropollutants onto biochar: A review of relevant kinetics, mechanisms
and equilibrium. Environmental Science: Water Research & Technology 5(5): 821-832. https://doi.org/10.1039/C8EW00938D
Villanueva, A.D. 2018. Salting out and salting in of benzene in
water: A consistency evaluation. Monatshefte für Chemie 149:
231-242. https://doi.org/10.1007/s00706-017-2122-6
Wang, T. 2012. New method for removal of hydrogen peroxide
interference in the analysis of chemical oxygen demand. Environmental
Science & Technology 46(4): 2294-2302.
Wang, Y., Hou, Y., Wu, W., Liu, D., Ji, Y. & Ren, S. 2016.
Roles of a hydrogen bond donor and a hydrogen bond acceptor in the extraction
of toluene from n-heptane using deep eutectic solvents. Green Chemistry 18(8): 3089-3098. https://doi.org/10.1039/c5gc02909k
Xu, X., Zhang, X., Liu, S., Zhang, J. & Xu, Y. 2018. Sustained
production of H₂O₂ in alkaline water solution using borate and
phosphate-modified Au/TiO₂ photocatalysts. Photochemical
& Photobiological Sciences 17: 102-108. https://doi.org/10.1039/c8pp00177d
Xuan, X., Chen, Z., Gong, Y., Shen, H. & Chen, S. 2020.
Partitioning of hydrogen peroxide in gas-liquid and gas-aerosol phases. Atmospheric
Chemistry and Physics 20(9): 5513-5526. https://doi.org/10.5194/acp-20-5513-2020
Zhang, G., Ren, L., Yan, Z., Kang, L., Lei, Z., Xu, H., Shi, F.
& Liu, Z.H. 2015. Mesoporous-assembled MnO₂
with large specific surface area. Journal of Materials Chemistry A 3:
13263-13271. https://doi.org/10.1039/C5TA01399D
Zhang, H., Wang, H., Huang, H., Li, Y., Liu, J. & Zhang, X.
2018. Cooperative decomposition of hydrogen peroxide by lignin-combined
transition metals in pulp bleaching. BioResources 13(2): 3922-3932. https://doi.org/10.15376/biores.13.2.3922-3931
Zhang, X., Liu, Y. & Lu, R. 2010. Decomposition kinetics and mechanism
of alkaline hydrogen peroxide with transition metals. Journal of South China
University of Technology (Natural Science Edition) 38(9):
40-45. https://doi.org/10.3969/j.issn.1000-565X.2010.09.008
Zhang, X., Zhou, B., Yin, S., Wang, Y., Zhang, X., Meng, Q., Meng,
F., Wei, C. & Wen, G. 2022. Mesoporous manganese dioxide prepared by
nano-casting: An efficient catalyst for degradation of methyl orange and oxalic
acid in aqueous solution. Vacuum 206: 111495. https://doi.org/10.1016/j.vacuum.2022.111495
*Corresponding author; email: jyp@zsc.edu.cn